最新消息:20210917 已从crifan.com换到crifan.org

【已解决】C# 傅里叶变换

C# crifan 766浏览 0评论
C# 傅里叶变换
快速傅里叶变换(FFT)的C#实现及详细注释 – 随煜而安的专栏 – CSDN博客
离散傅里叶变换、快速傅里叶变换C#实现 – weixin_37585701的博客 – CSDN博客
c# – 离散傅里叶变换 – 代码日志
快速傅里叶变换(FFT)的C#实现及详细注释 – 程序园
在C#中实现快速傅里叶变换(FFT) – 码客
Google Code Archive – Long-term storage for Google Code Project Hosting.
AForge.NET/ComplexImage.cs at master · andrewkirillov/AForge.NET
https://github.com/andrewkirillov/AForge.NET/blob/master/Sources/Imaging/ComplexImage.cs
AForge.NET/FourierTransform.cs at master · andrewkirillov/AForge.NET
https://github.com/andrewkirillov/AForge.NET/blob/master/Sources/Math/FourierTransform.cs
抽空去试试这个源码
FFTW Home Page
是C语言实现的
快速傅立叶变换(FFT)的C#代码-cnming-51CTO博客
离散傅里叶变换、快速傅里叶变换C#实现 –洋辣椒
感觉不错,抽空去试试
别人给出了数据计算后的例子
目的: 做傅里叶变换, 得到T在各个频率上的振幅
原先数据:
new_Signal = x^2 + y^2
=[0.077641, 0.070009, 0.086816, 0.180072, 0.218088, 0.110777,0.067657, 0.108425, 0.13954 , 0.13954 , 0.195336, 0.165397,0.146461, 0.107648, 0.056641, 0.135629]
傅里叶变换后是:
FreqAmp = [ 2.005677  +0.j        , -0.1811103 +0.01788887j,
       -0.22535551-0.22328895j, -0.00423924+0.23675752j,
        0.17528   +0.161549j  ,  0.04949067-0.04438796j,
       -0.06938049+0.09241905j, -0.11173713+0.02325139j,
       -0.029317  +0.j        , -0.11173713-0.02325139j,
       -0.06938049-0.09241905j,  0.04949067+0.04438796j,
        0.17528   -0.161549j  , -0.00423924-0.23675752j,
       -0.22535551+0.22328895j, -0.1811103 -0.01788887j]
现在要去想办法去用C#实现上述的计算结果
c# fourier transform code
signal processing – An implementation of the fast Fourier transform (FFT) in C# – Stack Overflow
可以考虑是试试这个:
具体实现:
AForge.NET/FourierTransform.cs at master · andrewkirillov/AForge.NET · GitHub
https://github.com/andrewkirillov/AForge.NET/blob/master/Sources/Math/FourierTransform.cs
使用范例:
AForge.NET/ComplexImage.cs at master · andrewkirillov/AForge.NET · GitHub
https://github.com/andrewkirillov/AForge.NET/blob/master/Sources/Imaging/ComplexImage.cs
不过有微软官网的
FFTLibrary 在 C# 中 用于 Visual Studio 2015
去看看
直接贴出源码了
要去搞清楚如何使用
Application_Note_ChrisOakley.pdf
Fast Fourier transform – Rosetta Code
也有直接的代码
A very simple Discrete Fourier Transform algorithm (not suitable for real-time processing) · GitHub
结果用:
using System;
using System.Numerics;
using System;
using System.Numerics;
namespace FUYI_Client
{
    class crifanFFT
    {
        // Fast Fourier Transform in C#
        /* Performs a Bit Reversal Algorithm on a postive integer
         * for given number of bits
         * e.g. 011 with 3 bits is reversed to 110 */
        public static int BitReverse(int n, int bits)
        {
            int reversedN = n;
            int count = bits – 1;
            n >>= 1;
            while (n > 0)
            {
                reversedN = (reversedN << 1) | (n & 1);
                count–;
                n >>= 1;
            }
            return ((reversedN << count) & ((1 << bits) – 1));
        }
        /* Uses Cooley-Tukey iterative in-place algorithm with radix-2 DIT case
         * assumes no of points provided are a power of 2 */
        public static void FFT(Complex[] buffer)
        {
            int bits = (int)Math.Log(buffer.Length, 2);
            for (int j = 1; j < buffer.Length / 2; j++)
            {
                int swapPos = BitReverse(j, bits);
                var temp = buffer[j];
                buffer[j] = buffer[swapPos];
                buffer[swapPos] = temp;
            }
            for (int N = 2; N <= buffer.Length; N <<= 1)
            {
                for (int i = 0; i < buffer.Length; i += N)
                {
                    for (int k = 0; k < N / 2; k++)
                    {
                        int evenIndex = i + k;
                        int oddIndex = i + k + (N / 2);
                        var even = buffer[evenIndex];
                        var odd = buffer[oddIndex];
                        double term = -2 * Math.PI * k / (double)N;
                        Complex exp = new Complex(Math.Cos(term), Math.Sin(term)) *  odd;
                        buffer[evenIndex] = even + exp;
                        buffer[oddIndex] = even – exp;
                    }
                }
            }
        }
        }
}
        private void testFftToolStripMenuItem_Click(object sender, EventArgs e)
        {
            Log(“test FFT”);
            //Complex[] input = { 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0 };
            Complex[] input = { 0.077641, 0.070009, 0.086816, 0.180072, 0.218088, 0.110777, 0.067657, 0.108425, 0.13954, 0.13954, 0.195336, 0.165397, 0.146461, 0.107648, 0.056641, 0.135629 };
            crifanFFT.FFT(input);
            Console.WriteLine(“Results:”);
            foreach (Complex c in input)
            {
                Console.WriteLine(c);
            }
        }
测试结果,除了第一个和预期一致,其他都不一样
(2.005677, 0)
(-0.0440878098072094, 0.0563375488458987)
(-0.0940835140038455, -0.272891535410738)
(-0.203768798154086, 0.0126622006202)
(-0.087264, 0.046051)
(0.0633735877860757, 0.179707364194415)
(0.0618915140038455, 0.305360464589262)
(-0.0631129798247799, -0.0151972875798867)
(-0.0293169999999998, 0)
(-0.0631129798247799, 0.0151972875798867)
(0.0618915140038455, -0.305360464589262)
(0.0633735877860758, -0.179707364194415)
(-0.087264, -0.046051)
(-0.203768798154086, -0.0126622006202)
(-0.0940835140038455, 0.272891535410738)
(-0.0440878098072094, -0.0563375488458987)
所以只能再去换别的写法
然后换成:
        /// <summary>
        /// Provides the Discrete Fourier Transform for a real-valued input signal
        /// </summary>
        /// <param name="input">the signal to transform</param>
        /// <param name="partials">the maximum number of partials to calculate. If  not value is given it defaults to input/2</param>
        /// <returns>The Cos and Sin components of the signal,  respectively</returns>
        public static Tuple<double[], double[]> DFT(double[] input, int partials =  0)
        {
            int len = input.Length;
            double[] cosDFT = new double[len / 2 + 1];
            double[] sinDFT = new double[len / 2 + 1];
            if (partials == 0)
                partials = len / 2;
            for (int n = 0; n <= partials; n++)
            {
                double cos = 0.0;
                double sin = 0.0;
                for (int i = 0; i < len; i++)
                {
                    cos += input[i] * Math.Cos(2 * Math.PI * n / len * i);
                    sin += input[i] * Math.Sin(2 * Math.PI * n / len * i);
                }
                cosDFT[n] = cos;
                sinDFT[n] = sin;
            }
            return new Tuple<double[], double[]>(cosDFT, sinDFT);
        }
            double[] input = { 0.077641, 0.070009, 0.086816, 0.180072, 0.218088,  0.110777, 0.067657, 0.108425, 0.13954, 0.13954, 0.195336, 0.165397, 0.146461,  0.107648, 0.056641, 0.135629 };
            Tuple<double[], double[]> output = crifanDFT.DFT(input);
            double[] outputList1 = output.Item1;
            double[] outputList2 = output.Item2;
            Console.WriteLine("Results:");
            int curIdx = 0;
            foreach (double curItem1Value in outputList1)
            {
                Console.WriteLine("[{0}]={{{1}, {2}}}", curIdx, curItem1Value,  outputList2[curIdx]);
                curIdx++;
            }
结果竟然是:
计算的结果:
[0]={2.005677, 0}
[1]={-0.181110302258433, -0.0178888702258191}
[2]={-0.225355514003845, 0.223288954424222}
[3]={-0.00423923852817759, -0.236757522000121}
[4]={0.175279999999999, -0.161549}
[5]={0.0494906709200072, 0.0443879571855055}
[6]={-0.0693804859961551, -0.092419045575778}
[7]={-0.111737130133397, -0.0232513910401929}
[8]={-0.029317, 8.53570355076414E-16}
是和预期的,基本一致,除了最后一个
但是16个输入的值
输出的tuple,用于表示复数,竟然只有10个了:
很是奇怪,所以要去找找原因
去调试,才看清,原来默认只计算length/2的个数
所以传入原始数组长度,再去计算看看结果是否完全符合预期
            Tuple<double[], double[]> output = crifanDFT.DFT(input,  partials:input.Length);
结果:
内部报错
原来是cos和sin的数组长度也不对,没有变回来传入的长度
所以去改为:
        /// <summary>
        /// Provides the Discrete Fourier Transform for a real-valued input signal
        /// </summary>
        /// <param name="input">the signal to transform</param>
        /// <param name="partials">the maximum number of partials to calculate. If  not value is given it defaults to input/2</param>
        /// <returns>The Cos and Sin components of the signal,  respectively</returns>
        public static Tuple<double[], double[]> DFT(double[] input, int partials =  0)
        {
            int len = input.Length;
            if (partials == 0)
                partials = len / 2;
            //double[] cosDFT = new double[len / 2 + 1];
            //double[] sinDFT = new double[len / 2 + 1];
            double[] cosDFT = new double[partials];
            double[] sinDFT = new double[partials];
            //if (partials == 0)
            //    partials = len / 2;
            //for (int n = 0; n <= partials; n++)
            for (int n = 0; n < partials; n++)
            {
                double cos = 0.0;
                double sin = 0.0;
                for (int i = 0; i < len; i++)
                {
                    cos += input[i] * Math.Cos(2 * Math.PI * n / len * i);
                    sin += input[i] * Math.Sin(2 * Math.PI * n / len * i);
                }
                cosDFT[n] = cos;
                sinDFT[n] = sin;
            }
            return new Tuple<double[], double[]>(cosDFT, sinDFT);
        }
结果:
是可以输出我们希望的结果的
输入:
            double[] input = { 0.077641, 0.070009, 0.086816, 0.180072, 0.218088,  0.110777, 0.067657, 0.108425, 0.13954, 0.13954, 0.195336, 0.165397, 0.146461,  0.107648, 0.056641, 0.135629 };
输出:
[0]={2.005677, 0}
[1]={-0.181110302258433, -0.0178888702258191}
[2]={-0.225355514003845, 0.223288954424222}
[3]={-0.00423923852817759, -0.236757522000121}
[4]={0.175279999999999, -0.161549}
[5]={0.0494906709200072, 0.0443879571855055}
[6]={-0.0693804859961551, -0.092419045575778}
[7]={-0.111737130133397, -0.0232513910401929}
[8]={-0.029317, 8.53570355076414E-16}
[9]={-0.111737130133397, 0.0232513910401936}
[10]={-0.0693804859961542, 0.092419045575779}
[11]={0.0494906709200082, -0.0443879571855054}
[12]={0.175279999999999, 0.161549}
[13]={-0.0042392385281777, 0.236757522000121}
[14]={-0.225355514003845, -0.223288954424222}
[15]={-0.181110302258429, 0.0178888702258207}
对比后发现是我们要的
【总结】
目前,对于数据:
输入:
[0.077641, 0.070009, 0.086816, 0.180072, 0.218088, 0.110777,0.067657, 0.108425, 0.13954 , 0.13954 , 0.195336, 0.165397,0.146461, 0.107648, 0.056641, 0.135629]
可以通过C#代码:
crifanDFT.cs
using System;
using System.Numerics;
namespace FUYI_Client
{
    class crifanDFT
    {
        // Fast Fourier Transform in C#
        /// <summary>
        /// Provides the Discrete Fourier Transform for a real-valued input signal
        /// </summary>
        /// <param name="input">the signal to transform</param>
        /// <param name="partials">the maximum number of partials to calculate. If  not value is given it defaults to input/2</param>
        /// <returns>The Cos and Sin components of the signal,  respectively</returns>
        public static Tuple<double[], double[]> DFT(double[] input, int partials =  0)
        {
            int len = input.Length;
            if (partials == 0)
                partials = len / 2;
            //double[] cosDFT = new double[len / 2 + 1];
            //double[] sinDFT = new double[len / 2 + 1];
            double[] cosDFT = new double[partials];
            double[] sinDFT = new double[partials];
            //if (partials == 0)
            //    partials = len / 2;
            //for (int n = 0; n <= partials; n++)
            for (int n = 0; n < partials; n++)
            {
                double cos = 0.0;
                double sin = 0.0;
                for (int i = 0; i < len; i++)
                {
                    cos += input[i] * Math.Cos(2 * Math.PI * n / len * i);
                    sin += input[i] * Math.Sin(2 * Math.PI * n / len * i);
                }
                cosDFT[n] = cos;
                sinDFT[n] = sin;
            }
            return new Tuple<double[], double[]>(cosDFT, sinDFT);
        }
        /// <summary>
        /// Takes the real-valued Cos and Sin components of Fourier transformed  signal and reconstructs the time-domain signal
        /// </summary>
        /// <param name="cos">Array of cos components, containing frequency  components from 0 to pi. sin.Length must match cos.Length</param>
        /// <param name="sin">Array of sin components, containing frequency  components from 0 to pi. sin.Length must match cos.Length</param>
        /// <param name="len">
        /// The length of the output signal.
        /// If len < (partials-1)*2 then frequency data will be lost in the output  signal.
        /// if no len parameter is given it defaults to (partials-1)*2
        /// </param>
        /// <returns>the real-valued time-domain signal</returns>
        public static double[] IDFT(double[] cos, double[] sin, int len = 0)
        {
            if (cos.Length != sin.Length) throw new ArgumentException("cos.Length  and sin.Length bust match!");
            if (len == 0)
                len = (cos.Length - 1) * 2;
            double[] output = new double[len];
            int partials = sin.Length;
            if (partials > len / 2)
                partials = len / 2;
            for (int n = 0; n <= partials; n++)
            {
                for (int i = 0; i < len; i++)
                {
                    output[i] += Math.Cos(2 * Math.PI * n / len * i) * cos[n];
                    output[i] += Math.Sin(2 * Math.PI * n / len * i) * sin[n];
                }
            }
            return output;
        }
    }
}
注:此处暂时没用到IDFT,以备后用
测试代码:
            double[] input = { 0.077641, 0.070009, 0.086816, 0.180072, 0.218088,  0.110777, 0.067657, 0.108425, 0.13954, 0.13954, 0.195336, 0.165397, 0.146461,  0.107648, 0.056641, 0.135629 };

            //Tuple<double[], double[]> output = crifanDFT.DFT(input);
            Tuple<double[], double[]> output = crifanDFT.DFT(input,  partials:input.Length);
            double[] outputList1 = output.Item1;
            double[] outputList2 = output.Item2;
            Console.WriteLine("Results:");
            int curIdx = 0;
            foreach (double curItem1Value in outputList1)
            {
                Console.WriteLine("[{0}]={{{1}, {2}}}", curIdx, curItem1Value,  outputList2[curIdx]);
                curIdx++;
            }
        }
可以输出我们要的结果:
Results:
[0]={2.005677, 0}
[1]={-0.181110302258433, -0.0178888702258191}
[2]={-0.225355514003845, 0.223288954424222}
[3]={-0.00423923852817759, -0.236757522000121}
[4]={0.175279999999999, -0.161549}
[5]={0.0494906709200072, 0.0443879571855055}
[6]={-0.0693804859961551, -0.092419045575778}
[7]={-0.111737130133397, -0.0232513910401929}
[8]={-0.029317, 8.53570355076414E-16}
[9]={-0.111737130133397, 0.0232513910401936}
[10]={-0.0693804859961542, 0.092419045575779}
[11]={0.0494906709200082, -0.0443879571855054}
[12]={0.175279999999999, 0.161549}
[13]={-0.0042392385281777, 0.236757522000121}
[14]={-0.225355514003845, -0.223288954424222}
[15]={-0.181110302258429, 0.0178888702258207}

转载请注明:在路上 » 【已解决】C# 傅里叶变换

发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
90 queries in 0.165 seconds, using 20.23MB memory