最新消息:20210917 已从crifan.com换到crifan.org

【已解决】Python中用pandas读取excel文件并解析得到数据

Excel crifan 979浏览 0评论
折腾:
【未解决】用Python实现解析excel计算业绩统计并打包成可执行文件
期间,现有一个excel
想要读取其中数据,并做后续计算和处理
之前已经会用,知道可以用,openpyxl或xlsxreader之类工具去处理
现在希望用pandas,去试试
先去搭建虚拟环境,结果报错:
【已解决】Mac中pipenv安装报错:Could not find a version that matches pandas
去尝试用pandas去读取excel文件,并解析得到数据。
搞清楚如何用pandas读取excel
pandas read excel
Pandas 概览 | Pandas 中文 (pypandas.cn)
十分钟入门 Pandas | Pandas 中文 (pypandas.cn)
基础用法 | Pandas 中文 (pypandas.cn)
pandas read excel用法
pandas中pd.read_excel()的用法_前行的zhu的博客-CSDN博客_pd.read_excel
【python】pandas库pd.read_excel操作读取excel文件参数整理与实例_brucewong0516的博客-CSDN博客_pd.read_excel
结果报错了:
【已解决】pandas的read_excel报错:ImportError Missing optional dependency xlrd
然后继续看看,如何获取每一列,或者每一行的数据:
pandas 基本用法
基础用法 | Pandas 中文 (pypandas.cn)
然后去搞清楚,行和列的总数
rowCount, columnCount = salePd.shape
print("rowCount=%s, columnCount=%s" % (rowCount, columnCount))
rowCount=1017, columnCount=8
【总结】
此处,读取一个excel,并且循环读取每一行的值,相关代码是:
import os
import pandas as pd


################################################################################
# Config
################################################################################


InputFolder = "input"


saleMoneySumDict = {}


saleDf = pd.read_excel(io=SaleFullPath, engine="openpyxl")
print("saleDf=%s" % saleDf)


saleRowCount, saleColumnCount = saleDf.shape
print("saleRowCount=%s, saleColumnCount=%s" % (saleRowCount, saleColumnCount))


saleTitleList = saleDf.columns
print("saleTitleList=%s" % saleTitleList)


# sort by time


print("before head=%s" % saleDf.head())
saleDf = saleDf.sort_values(by='时间')
print("after head=%s" % saleDf.head())


firstTime = saleDf.iloc[0]["时间"]
lastTime = saleDf.iloc[saleRowCount - 1]["时间"]
print("firstTime=%s, lastTime=%s" % (firstTime, lastTime))


# for curIdx, curRow in saleDf.itertuples():
for rowIdx, rowValue in saleDf.iterrows():
  print("%s %s %s" % ("-"*10, rowIdx, "-"*10))
  print(rowIdx)
  print(rowValue)
  # curRowDict = saleDf.iloc[curIdx]
  # saleId = curRowDict["销售员编号"]
  # saleMoney = curRowDict["业绩金额"]


  saleId = rowValue["销售员编号"]
  saleMoney = rowValue["业绩金额"]
  print("saleId=%s, saleMoney=%s" % (saleId, saleMoney))


  if saleId in saleMoneySumDict.keys():
    saleMoneySumDict[saleId] = saleMoneySumDict[saleId] + saleMoney
  else:
    saleMoneySumDict[saleId] = saleMoney


print("len(saleMoneySumDict.keys())=%s" % len(saleMoneySumDict.keys())) # len(saleMoneySumDict.keys())=463
print("saleMoneySumDict=%s" % saleMoneySumDict)
输出:
saleDf=             销售员编号  类型  下级账号          销售数量      业绩系数        单价           业绩金额                  时间
0     adcandccc555  销售   NaN  1.000000e+07  8.666666   5.018457  4.349329e+08 2021-03-12 12:15:50
1     yang12345ccc  销售   NaN  4.000000e+04  8.666600  20.084027  6.962409e+06 2021-05-29 10:59:50
2     mo1212121212  销售   NaN  1.990000e+04  8.666666  20.079746  3.463087e+06 2021-05-01 01:00:06
3     xcp555555555  销售   NaN  1.710000e+04  8.666600  20.080157  2.975856e+06 2021-05-04 08:49:21
4     zengjunping1  销售   NaN  1.202000e+04  8.666666  20.078681  2.091663e+06 2021-04-19 20:40:00
...            ...  ..   ...           ...       ...        ...           ...                 ...
1215  wabjtam12345  销售   NaN  1.000000e+00  8.666666   0.041161  3.567306e-01 2021-02-27 21:17:00
1216  donglijun123  销售   NaN  5.600000e-03  8.666666   5.041192  2.446658e-01 2021-03-21 11:53:30
1217  zw1111111111  销售   NaN  5.000000e-01  8.666666   0.041138  1.782634e-01 2021-03-01 09:52:20
1218  aaasssdddfff  销售   NaN  2.000000e-01  8.666000   0.041173  7.136102e-02 2021-02-26 18:41:50
1219  ckj111222333  销售   NaN  1.000000e-01  8.666666   0.041172  3.568276e-02 2021-02-27 02:22:20


[1220 rows x 8 columns]
saleRowCount=1220, saleColumnCount=8
saleTitleList=Index(['销售员编号', '类型', '下级账号', '销售数量', '业绩系数', '单价 ', '业绩金额', '时间'], dtype='object')
before head=          销售员编号  类型  下级账号        销售数量      业绩系数        单价           业绩金额                  时间
0  adcandccc555  销售   NaN  10000000.0  8.666666   5.018457  4.349329e+08 2021-03-12 12:15:50
1  yang12345ccc  销售   NaN     40000.0  8.666600  20.084027  6.962409e+06 2021-05-29 10:59:50
2  mo1212121212  销售   NaN     19900.0  8.666666  20.079746  3.463087e+06 2021-05-01 01:00:06
3  xcp555555555  销售   NaN     17100.0  8.666600  20.080157  2.975856e+06 2021-05-04 08:49:21
4  zengjunping1  销售   NaN     12020.0  8.666666  20.078681  2.091663e+06 2021-04-19 20:40:00
after head=             销售员编号  类型  下级账号  销售数量   业绩系数       单价       业绩金额                  时间
1208  ancdefg12345  销售   NaN   1.0  8.666  0.041174  0.356811 2021-02-20 14:00:00
1212  ancdefg12345  销售   NaN   1.0  8.666  0.041174  0.356811 2021-02-20 14:00:00
1211  ancdefg12345  销售   NaN   1.0  8.666  0.041174  0.356811 2021-02-20 14:00:00
1210  ancdefg12345  销售   NaN   1.0  8.666  0.041174  0.356811 2021-02-20 14:00:00
1209  ancdefg12345  销售   NaN   1.0  8.666  0.041174  0.356811 2021-02-20 14:00:00
firstTime=2021-02-20 14:00:00, lastTime=2021-06-09 20:29:11
---------- 1208 ----------
1208
销售员编号           ancdefg12345
类型                        销售
下级账号                     NaN
销售数量                     1.0
业绩系数                   8.666
单价                  0.041174
业绩金额                0.356811
时间       2021-02-20 14:00:00
Name: 1208, dtype: object
saleId=ancdefg12345, saleMoney=0.35681122
---------- 1212 ----------
1212
销售员编号           ancdefg12345
类型                        销售
下级账号                     NaN
销售数量                     1.0
业绩系数                   8.666
单价                  0.041174
业绩金额                0.356811
时间       2021-02-20 14:00:00
Name: 1212, dtype: object
saleId=ancdefg12345, saleMoney=0.35681122

。。。
如此即可。

转载请注明:在路上 » 【已解决】Python中用pandas读取excel文件并解析得到数据

发表我的评论
取消评论

表情

Hi,您需要填写昵称和邮箱!

  • 昵称 (必填)
  • 邮箱 (必填)
  • 网址
89 queries in 0.163 seconds, using 20.08MB memory